Vordefinierte Konstanten

Folgende Konstanten werden von dieser Erweiterung definiert und stehen nur zur Verfügung, wenn die Erweiterung entweder statisch in PHP kompiliert oder dynamisch zur Laufzeit geladen wurde.

Training algorithms
FANN_TRAIN_INCREMENTAL (int)
Standard backpropagation algorithm, where the weights are updated after each training pattern. This means that the weights are updated many times during a single epoch. For this reason some problems, will train very fast with this algorithm, while other more advanced problems will not train very well.
FANN_TRAIN_BATCH (int)
Standard backpropagation algorithm, where the weights are updated after calculating the mean square error for the whole training set. This means that the weights are only updated once during a epoch. For this reason some problems, will train slower with this algorithm. But since the mean square error is calculated more correctly than in incremental training, some problems will reach a better solutions with this algorithm.
FANN_TRAIN_RPROP (int)
A more advanced batch training algorithm which achieves good results for many problems. The RPROP training algorithm is adaptive, and does therefore not use the learning_rate. Some other parameters can however be set to change the way the RPROP algorithm works, but it is only recommended for users with insight in how the RPROP training algorithm works. The RPROP training algorithm is described by [Riedmiller and Braun, 1993], but the actual learning algorithm used here is the iRPROP- training algorithm which is described by [Igel and Husken, 2000] which is an variety of the standard RPROP training algorithm.
FANN_TRAIN_QUICKPROP (int)
A more advanced batch training algorithm which achieves good results for many problems. The quickprop training algorithm uses the learning_rate parameter along with other more advanced parameters, but it is only recommended to change these advanced parameters, for users with insight in how the quickprop training algorithm works. The quickprop training algorithm is described by [Fahlman, 1988].
FANN_TRAIN_SARPROP (int)
Even more advance training algorithm. Only for version 2.2
Activation functions
FANN_LINEAR (int)
Linear activation function.
FANN_THRESHOLD (int)
Threshold activation function.
FANN_THRESHOLD_SYMMETRIC (int)
Threshold activation function.
FANN_SIGMOID (int)
Sigmoid activation function.
FANN_SIGMOID_STEPWISE (int)
Stepwise linear approximation to sigmoid.
FANN_SIGMOID_SYMMETRIC (int)
Symmetric sigmoid activation function, aka. tanh.
FANN_SIGMOID_SYMMETRIC_STEPWISE (int)
Stepwise linear approximation to symmetric sigmoid
FANN_GAUSSIAN (int)
Gaussian activation function.
FANN_GAUSSIAN_SYMMETRIC (int)
Symmetric gaussian activation function.
FANN_GAUSSIAN_STEPWISE (int)
Stepwise gaussian activation function.
FANN_ELLIOT (int)
Fast (sigmoid like) activation function defined by David Elliott.
FANN_ELLIOT_SYMMETRIC (int)
Fast (symmetric sigmoid like) activation function defined by David Elliott.
FANN_LINEAR_PIECE (int)
Bounded linear activation function.
FANN_LINEAR_PIECE_SYMMETRIC (int)
Bounded linear activation function.
FANN_SIN_SYMMETRIC (int)
Periodical sinus activation function.
FANN_COS_SYMMETRIC (int)
Periodical cosinus activation function.
FANN_SIN (int)
Periodical sinus activation function.
FANN_COS (int)
Periodical cosinus activation function.
Error function used during training
FANN_ERRORFUNC_LINEAR (int)
Standard linear error function.
FANN_ERRORFUNC_TANH (int)
Tanh error function; usually better but may require a lower learning rate. This error function aggressively targets outputs that differ much from the desired, while not targeting outputs that only differ slightly. Not recommended for cascade or incremental training.
Stop criteria used during training
FANN_STOPFUNC_MSE (int)
Stop criteria is Mean Square Error (MSE) value.
FANN_STOPFUNC_BIT (int)
Stop criteria is number of bits that fail. The number of bits means the number of output neurons which differs more than the bit fail limit (see fann_get_bit_fail_limit, fann_set_bit_fail_limit). The bits are counted in all of the training data, so this number can be higher than the number of training data.
Definition of network types used by fann_get_network_type()
FANN_NETTYPE_LAYER (int)
Each layer only has connections to the next layer.
FANN_NETTYPE_SHORTCUT (int)
Each layer has connections to all following layers
Errors
FANN_E_NO_ERROR (int)
No error.
FANN_E_CANT_OPEN_CONFIG_R (int)
Unable to open configuration file for reading.
FANN_E_CANT_OPEN_CONFIG_W (int)
Unable to open configuration file for writing.
FANN_E_WRONG_CONFIG_VERSION (int)
Wrong version of configuration file.
FANN_E_CANT_READ_CONFIG (int)
Error reading info from configuration file.
FANN_E_CANT_READ_NEURON (int)
Error reading neuron info from configuration file.
FANN_E_CANT_READ_CONNECTIONS (int)
Error reading connections from configuration file.
FANN_E_WRONG_NUM_CONNECTIONS (int)
Number of connections not equal to the number expected.
FANN_E_CANT_OPEN_TD_W (int)
Unable to open train data file for writing.
FANN_E_CANT_OPEN_TD_R (int)
Unable to open train data file for reading.
FANN_E_CANT_READ_TD (int)
Error reading training data from file.
FANN_E_CANT_ALLOCATE_MEM (int)
Unable to allocate memory.
FANN_E_CANT_TRAIN_ACTIVATION (int)
Unable to train with the selected activation function.
FANN_E_CANT_USE_ACTIVATION (int)
Unable to use the selected activation function.
FANN_E_TRAIN_DATA_MISMATCH (int)
Irreconcilable differences between two struct fann_train_data structures.
FANN_E_CANT_USE_TRAIN_ALG (int)
Unable to use the selected training algorithm.
FANN_E_TRAIN_DATA_SUBSET (int)
Trying to take subset which is not within the training set.
FANN_E_INDEX_OUT_OF_BOUND (int)
Index is out of bound.
FANN_E_SCALE_NOT_PRESENT (int)
Scaling parameters not present.
FANN_E_INPUT_NO_MATCH (int)
The number of input neurons in the ann and data do not match
FANN_E_OUTPUT_NO_MATCH (int)
The number of output neurons in the ann and data do not match.

Hier Kannst Du einen Kommentar verfassen


Bitte gib mindestens 10 Zeichen ein.
Wird geladen... Bitte warte.
* Pflichtangabe
Es sind noch keine Kommentare vorhanden.

PHP cURL-Tutorial: Verwendung von cURL zum Durchführen von HTTP-Anfragen

cURL ist eine leistungsstarke PHP-Erweiterung, die es Ihnen ermöglicht, mit verschiedenen Servern über verschiedene Protokolle wie HTTP, HTTPS, FTP und mehr zu kommunizieren. ...

TheMax

Autor : TheMax
Kategorie: PHP-Tutorials

Midjourney Tutorial - Anleitung für Anfänger

Über Midjourney, dem Tool zur Erstellung digitaler Bilder mithilfe von künstlicher Intelligenz, gibt es ein informatives Video mit dem Titel "Midjourney Tutorial auf Deutsch - Anleitung für Anfänger" ...

Mike94

Autor : Mike94
Kategorie: KI Tutorials

Grundlagen von Views in MySQL

Views in einer MySQL-Datenbank bieten die Möglichkeit, eine virtuelle Tabelle basierend auf dem Ergebnis einer SQL-Abfrage zu erstellen. ...

admin

Autor : admin
Kategorie: mySQL-Tutorials

Tutorial veröffentlichen

Tutorial veröffentlichen

Teile Dein Wissen mit anderen Entwicklern weltweit

Du bist Profi in deinem Bereich und möchtest dein Wissen teilen, dann melde dich jetzt an und teile es mit unserer PHP-Community

mehr erfahren

Tutorial veröffentlichen

Ein data POST via Curl funktioniert nicht.

Anmorg93 Respekt, du bist ja nur um rund 10 Jahre zu spät dran.

Geschrieben von scatello am 21.11.2024 10:57:00
Forum: PHP Developer Forum
Ein data POST via Curl funktioniert nicht.

Hey, hatte auch mal das Problem. Oft liegt’s an fehlenden oder falschen Headern. Probier mal:​ $ch = curl_init(); curl_setopt($ch, CURLOPT_UR ...

Geschrieben von Anmorg93 am 21.11.2024 10:48:17
Forum: PHP Developer Forum
Probleme mit einem Linux-Befehl...

guten Tag liebe Community ;) hallo liebe Freunde auf der php-Ressource, hoffe, das landet im richtigen Unterforum also, womit ich im Moment zu ...

Geschrieben von dhubs am 15.11.2024 16:21:52
Forum: Off-Topic Diskussionen
ein .htaccess-File für eine WordPress-Installation - wie gehe ich hier vor.?

hallo und guten Tag, wie lege ich denn einen .htaccess für eine WordPress-Installation an - wie gehe ich hier vor. Kann man das denn so mache ...

Geschrieben von dhubs am 13.11.2024 15:52:54
Forum: Webmaster